Problem Set 1 Solutions CS\&SS Math Camp 2021

August 10, 2021

1. $\sum_{k=1}^{4}(k-1)^{2}=(1-1)^{2}+(2-1)^{2}+(3-1)^{2}+(4-1)^{2}=0+1+4+9=14$
2. $\prod_{i=2}^{10} \frac{(i+1)}{i}=\frac{3}{2} \frac{4}{3} \frac{5}{4} \ldots \frac{10}{9} \frac{11}{10}=\frac{11}{2}$
3. $\log \left(\mathrm{e}^{2}\right)=2$
4. $e^{4} e^{10}=e^{14}$
5. $10^{3} 10^{-2}=10^{3-2}=10$
6. $400^{\frac{1}{2}}=20$
7. Compute the root(s) of the following quadratic equation:

$$
\begin{gathered}
x^{2}-8 x+12=0 \\
(x-6)(x-2)=0 \\
x=6 \text { or } x=2
\end{gathered}
$$

8. Compute the root(s) of the following quadratic equation:

$$
\begin{gathered}
x^{2}+5 x+4=0 \\
(x+4)(x+1)=0 \\
\Rightarrow x=-4, x=-1
\end{gathered}
$$

OR

Using the quadratic equation,

$$
\begin{array}{lc}
x= & \frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \\
x= & \frac{-5+\sqrt{5^{2}-4 \times 1 \times 4}}{2 \times 1} \\
x= & \frac{-5+\sqrt{25-16}}{2} \\
x= & \frac{-5+\sqrt{9}}{2} \\
x= & \frac{-5+3}{2} \\
x= & \frac{-2}{2} \\
x= & \frac{-1}{2} \\
x= & \frac{-5-\sqrt{5^{2}-4 \times 1 \times 4}}{2 \times 1} \\
x= & \frac{-5-\sqrt{9}}{2} \\
x= & \frac{-5-3}{2} \\
x= & \frac{-8}{2} \\
x= & -4 \\
x=-4 \text { or } x=-1
\end{array}
$$

9. Suppose the supply curve for oil is expressed with the following linear equation:

$$
-x+4 y=30
$$

And the demand curve is expressed with this equation:

$$
2 x+5 y=9
$$

Solve the system of linear equations to compute the equilibrium cost. Plot the two lines. Multiply the first equation by two:

$$
\begin{aligned}
2(-x+4 y & =30) \\
-2 x+8 y & =60
\end{aligned}
$$

Add the two equations

$$
\begin{gathered}
-2 x+8 y=60 \\
+2 x+5 y=9 \\
0 x+13 y=69 \\
y=\frac{69}{13}
\end{gathered}
$$

Substitute back in to solve for x :

$$
\begin{gathered}
2 x+5\left(\frac{69}{13}\right)=9 \\
2 x+\frac{345}{13}=9 \\
2 x=\frac{-228}{13} \\
x=\frac{-114}{13}
\end{gathered}
$$

10. Compute the limit:

$$
\lim _{x \rightarrow \infty} x^{4}=\infty
$$

11. Compute the limit:

$$
\lim _{x \rightarrow 2} x^{4}=2^{4}=16
$$

12. Compute the limit:

$$
\lim _{x \downarrow 3} \frac{1}{x-3}=\infty
$$

