Problem Set 3: Differential Calculus Solutions CS\&SS Math Camp 2021

1. Plot the function $f(x)=3 x+2$.
(a) By eye, what is the derivate of this function at $x=4$?

The slope of the line is 3 since it has the form $y=m x+b$ and we know m is the slope.
(b) Compute the derivative using the appropriate formula.
$f^{\prime}(x)=3 \cdot 1 x^{1-1}+0=3$ [By the power rule.]

Compute the derivative:
2. $f(x)=x^{5}$
$f^{\prime}(x)=5 x^{4}$ [Use the power rule.]
3. $f(x)=10 x-30$
$f^{\prime}(x)=10$ [Use the power rule or recall the derivative of any line is m.]
4. $f(x)=2 x^{4}+x^{2}$
$f^{\prime}(x)=2\left(4 x^{3}\right)+2 x=8 x^{3}+2 x$ [Use the power rule and sum rule.]
5. $f(x)=\tan (x)=\frac{\sin (x)}{\cos (x)}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\cos (x) \cos (x)-(-\sin (x) \sin (x))}{\cos ^{2}(x)} \quad \text { [Use quotient rule.] } \\
& =\frac{\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)} \\
& =\frac{1}{\cos ^{2}(x)}
\end{aligned}
$$

6. $f(x)=e^{\sin (x)}$

$$
\begin{aligned}
& g(x)=e^{x} \quad g^{\prime}(x)=e^{x} \quad h(x)=\sin (x) \quad h^{\prime}(x)=\cos (x) \\
& f^{\prime}(x)=g^{\prime}(h(x)) \cdot h^{\prime}(x) \quad \text { [Use the chain rule.] } \\
& =e^{\sin (x)} \cdot \cos (x)
\end{aligned}
$$

7. $f(x)=x e^{x}+\log (\sin (x))$

We need to apply the product rule to the first term, $g(x)$, and the chain rule to the second term, $h(x)$, then the sum rule to the whole term, $f(x)=g(x)+h(x)$.

$$
\begin{gathered}
g(x)=x e^{x}=k(x) \cdot l(x) \Rightarrow k(x)=x \quad k^{\prime}(x)=1 \quad l(x)=e^{x} \quad l^{\prime}(x)=e^{x} \\
\mathbf{g}^{\prime}(\mathbf{x})=l^{\prime}(x) \cdot k(x)+l(x) \cdot k^{\prime}(x)=e^{x} \cdot x+e^{x} \cot 1=\mathbf{e}^{\mathbf{x}}(\mathbf{x}+\mathbf{1}) \\
h(x)=\log (\sin (x))=s(t(x)) \Rightarrow s(x)=\log x \quad s^{\prime}(x)=\frac{1}{x} \quad t(x)=\sin (x) \quad t^{\prime}(x)=\cos (x) \\
\mathbf{h}^{\prime}(\mathbf{x})=s^{\prime}(t(x)) \cdot t^{\prime}(x)=\frac{1}{\sin (x)} \cdot \cos (x)=\frac{\cos (\mathbf{x})}{\sin (\mathbf{x})}=\cot (\mathbf{x}) \\
\mathbf{f}^{\prime}(\mathbf{x})=g^{\prime}(x)+h^{\prime}(x)=\mathbf{e}^{\mathbf{x}}(\mathbf{x}+\mathbf{1})+\frac{\cos (\mathbf{x})}{\sin (\mathbf{x})}
\end{gathered}
$$

We can also have a function of a different variable. This is just changing the variable name and you will see this a lot in your statistics methods classes.
8. Compute the derivative of $g(\theta)=\theta^{2}-\theta^{4}$

$$
g^{\prime}(\theta)=2 \theta-4 \theta^{3} \text { [Use power and sum rules.] }
$$

9. Find the global minimum of $f(z)=z^{2}-6 z+8$

First compute the derivative, $f^{\prime}(z)$, and set it equal to zero to find the z value that makes $f^{\prime}(z)=0$.

$$
\begin{aligned}
f^{\prime}(z) & =2 z-6=0 & \text { [Use power and sum rules.] } \\
2 z & =6 & \text { [Add } 6 \text { to both sides.] } \\
z & =3 & \text { [Divide both sides by } 2 .]
\end{aligned}
$$

Check whether it's a min or max by finding the second derivative, $f^{\prime \prime}(z)$, and seeing whether $f^{\prime \prime}(z)$ is positive or negative at our critical value, 3 , i.e. is $f^{\prime}(3)>0$ or $f^{\prime}(3)<$ 0 ?

$$
f^{\prime \prime}(z)=2 \quad[\text { Use the power rule. }] f^{\prime \prime}(3)=2>0
$$

The second derivative is constant, equal to 2 at every point $z \in \mathbb{R}=(-\infty, \infty)$. So, at our critical point, $z=3$, the second derivative is positive and we know that we have a minimum at $z=3$. Since it's the only critical point, it's the global minimum. The minimum function value is

$$
f(3)=3^{2}-6 \cdot 3+8=-1
$$

, i.e. the minimum occurs at the coordinate $(3,-1)$.
10. In the following function, treat x as a constant (i.e. the same way you would treat the number 3 in the following equation $f(x)=3 x^{2}$, and differentiate with respect to μ :

$$
\begin{gathered}
h(\mu)=x \mu^{2} \\
h^{\prime}(\mu)=x(2 \cdot \mu)=2 x \mu[\text { Use the power rule. }]
\end{gathered}
$$

11. In the following function of μ, treat $X_{1}, X_{2}, \ldots, X_{n}$ as constants. Maximize the function over μ. In other words, find the value of μ, expressed in terms of $X_{1}, X_{2}, \ldots, X_{n}$, at which the function reaches its global maximum:
$L(\mu)=\log \left(\frac{1}{\sqrt{2 \pi}} e^{-\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}\right)$
First, we'll simplify using rules of the logarithms:

$$
\begin{aligned}
L(\mu) & =\log \left(\frac{1}{\sqrt{2 \pi}}\right)+\log \left(e^{-\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}\right) \\
& =\log \left(\frac{1}{\sqrt{2 \pi}}\right)-\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} \cdot \log (e) \\
& =\log \left(\frac{1}{\sqrt{2 \pi}}\right)-\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}
\end{aligned}
$$

The first term is a constant so the derivative is zero. The right-hand term is a sum, and the derivative of the sum is a sum of the derivatives. For each term $\left(X_{i}-\mu\right)^{2}$, we need to apply the chain rule:

$$
\begin{gathered}
L^{\prime}(\mu)=-\sum_{i=1}^{n}(-2)\left(X_{i}-\mu\right)=0 \\
2 \sum_{i=1}^{n}\left(X_{i}-\mu\right)=0 \\
\sum_{i=1}^{n}\left(X_{i}-\mu\right)=0 \\
\sum_{i=1}^{n} X_{i}-n \mu=0 \\
\mu=\frac{1}{n} \sum_{i=1}^{n} X_{i}
\end{gathered}
$$

To verify it's a max, take the second derivative:

$$
\begin{gathered}
L^{\prime}(\mu)=2 \sum_{i=1}^{n}\left(X_{i}-\mu\right)=2 \sum_{i=1}^{n} X_{i}-2 n \mu \\
L^{\prime \prime}(\mu)=-2 n<0 \text { when } n>0
\end{gathered}
$$

So it's a max, assuming $n>0$. Since it's the only critical point, it's the global max. This is the maximum likelihood estimate (MLE) of the expectation of a normal distribution, using a sample of size n. The MLE is the sample mean.

