# Problem Set 7: Discrete Distributions Solutions CS\&SS Math Camp 2021 

1. What is the proper distribution for the following random variables? What parameters do you need for the distribution?
(a) Draw 4 cards from a deck, $X=$ the number of hearts.
$X \sim$ HyperGeometric, where $\mathrm{N}=52$ (number of cards), $\mathrm{n}=4$ (number of draws), and $\mathrm{K}=13$ (number of hearts).
(b) Observe the weather in Seattle for 7 days. $Y=$ number of sunny days.
$X \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p})$, where $\mathrm{n}=7$, and $\mathrm{p}=$ probability of sunny. (It is possible to approximate this process with a Poisson distribution, however this approximation is generally only appropriate when p is small and n is large.)
(c) Take the bus to school each day for 30 days. $X=$ number of times the bus is late.
$X \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p})$, where $\mathrm{n}=30$, and $\mathrm{p}=$ probability of late bus. (It is possible to approximate this process with a Poisson distribution, however this approximation is generally only appropriate when $p$ is small and $n$ is large.)
(d) Survey 100 people and ask which candidate they will vote for, among 4 candidates. $X=$ the number of votes for each candidate.
$X \sim$ Multinomial, where $\mathrm{n}=100$ and $p_{1}-p_{4}$ is the probability of voting for each of the 4 candidates.
2. Let $X \sim \operatorname{Bin}(n=3, p=0.5)$.
(a) Write down the probability mass function for $X$.

$$
P(X=x \mid n=3, p=0.5)=\binom{3}{x} 0.5^{x}(1-0.5)^{3-x}=\binom{3}{x} 0.5^{3}
$$

(b) Graph the distribution of $X$.

Figure 1 displays the probability distribution (or mass function) for a Bino$\operatorname{mial}(3,0.5)$.


Figure 1: Probability Distribution of a Binomial(3,0.5)
(c) $E[X]$

$$
E[X]=n p=3 \cdot 0.5=1.5
$$

(d) $V[X]$

$$
V[X]=n p(1-p)=3 \cdot 0.5 \cdot 0.5=0.75
$$

3. Suppose the probability that you pass your graduate school qualifying exam is $75 \%$. Let $X$ be the number of tries until you pass.
(a) What distribution would you use to model $X$ ?
$X \sim$ Geometric $(\mathrm{p}=0.75)$. Remember, you can think of the Geometric distribution two different ways. (1) $\mathrm{X}=$ the number of the trial with the first success (see lecture 7 , slide 16). (2) $\mathrm{X}=$ the number of failures before a success (see lecture 7 , slide 18). The distribution depends on the way you parameterize X .
(b) $P(X=1)=$
(1) $0.75 \cdot 0.25^{1-1}=0.75$
(2) $0.75 \cdot 0.25^{1}=0.188$
(c) $P(X=2)=$
(1) $0.75 \cdot 0.25^{2-1}=0.188$
(2) $0.75 \cdot 0.25^{2}=0.047$
(d) $P(X>2)=$
(1) $P(X \leq 2)=1-[P(X=1)+P(X=2)]=1-[0.75+0.188]=0.062$
(2) $P(X \leq 2)=1-[P(X=0)+P(X=1)+P(X=2)]=1-[0.75+0.188+$ $0.047]=0.015$
4. A Poisson distribution is used to model traffic accidents at an intersection. $X=$ the number of accidents in a month. Assume $X \sim \operatorname{Poisson}(\lambda=1)$.
(a) $P(X=1)=$

$$
\frac{e^{-1} \cdot 1^{1}}{1!}=0.368
$$

(b) $P(X=0)=$

$$
\frac{e^{-1} \cdot 1^{0}}{0!}=0.368
$$

(c) $P(X>0)=$

$$
1-P(X=0)=1-0.368=0.632
$$

(d) Write out the summation (using $\Sigma$ ) that would be used to calculate $E[X]$. (You do not need to solve the summation.)

$$
E[X]=\sum_{k=0}^{\infty} k \cdot P(X=k)=\sum_{k=0}^{\infty} k \cdot \frac{e^{-1} 1^{k}}{k!}=\sum_{k=0}^{\infty} \frac{1}{(k-1)!\cdot e}
$$

