Center for Statistics and the Social Sciences

Math Camp 2021
Lecture 1: Algebra, Functions, \& Limits

Peter Gao \& Jessica Kunke

Department of Statistics
University of Washington

September 13, 2021

A typical day

Schedule

- Before class: Review the posted lectures and challenge problems
- 10:00am-10:45am Review lectures and practice problems (First day, introduction)
- 10:45am-11:30am Breakout Rooms: Practice problems
- 1:30pm-3:00pm R labs
- 3:00pm-4:00pm Additional problem session/office hours (if needed)

Lecture material

- Will be reviewed in brief each morning.
- Set realistic goals.
- Be patient with yourself.
- Communicate with us early and often.

Intros

- Name/how you'd like to be addressed
- Program
- One goal for math camp
- If you'd like: one thing you're nervous about!

Plans

- Breakout rooms
- Pre-lab quiz
- Feedback form
- Speed up/slow down

Day 1

- Math notation
- Order of operations
- Equation of a line
- Functions, domain, range, examples
- Function transformations
- Rules of exponents, logarithms
- Continuous and piecewise functions
- Limits

Notation

Real Numbers

- Any number that falls on the continuous line. Often represented by a, b, c, d
- Examples: $2,3.234,1 / 7, \sqrt{5}, \pi$
- The set of real numbers is denoted by \mathbb{R}. Then $a \in \mathbb{R}$ means a is in the set of real numbers.
Integers
- Any whole number. Often represented by i, j, k, l
- Examples: ...,-3,-2,-1,0,1,2,3, ...

Variables

- Can take on different values
- Often represented by x, y, z

Notation

Functions

- Often represented by f, g, h
- Examples: $f(x)=x^{2}+3, g(y)=6 y^{2}-2 y, h(z)=z^{3}$

Summations

- Often represented by \sum and summed over some integer
- Example:

$$
\sum_{i=1}^{3}(i+1)^{2}=(1+1)^{2}+(2+1)^{2}+(3+1)^{2}=2^{2}+3^{2}+4^{2}=29
$$

Products

- Often represented by Π and multiplied over some integer
- Example: $\prod_{k=1}^{3}\left(y_{k}+1\right)^{2}=\left(y_{1}+1\right)^{2} \times\left(y_{2}+1\right)^{2} \times\left(y_{3}+1\right)^{2}$

Order of Operations

Please Excuse My Dear Aunt Sally

- Parentheses
- Exponents
- Multiplication
- Division
- Addition
- Subtraction

Order of Operations

Examples

When looking at an expression, work from the left to right following PEMDAS. Note: multiplication and division are interchangeable; addition and subtraction are interchangeable.

- $\left((1+2)^{3}\right)^{2}=\left(3^{3}\right)^{2}=27^{2}=729$
- $4^{3} \cdot 3^{2}-10+27 / 3=64 \cdot 9-10+9=576-10+9=575$
- $(x+x)^{2}-2 x+3=(2 x)^{2}-2 x+3=4 x^{2}-2 x+3$

Fractions

Multiplying \& Dividing

Fractions are used to describe parts of numbers. They are comprised of two parts:

$$
\frac{\text { numerator }}{\text { denominator }}
$$

Examples: $\frac{2}{3}, \frac{16}{4}(=4), \frac{2}{4}=\frac{1}{2}, \frac{8}{1}(=8)$.
Multiplication: Multiply the numerators; multiply the denominators. Examples: $\frac{1}{2} \times \frac{3}{4}=\frac{1.3}{2.4}=\frac{3}{8}$
Division: Best to change it into a multiplication problem by multiplying the top fraction by the inverse of the bottom fraction.
Examples: $\frac{1 / 2}{7 / 8}=\frac{1}{2} \times \frac{8}{7}=\frac{1.8}{2.7}=\frac{8}{14}$.
Simplify: $\frac{8}{14}=\frac{2.4}{2.7}=\frac{2}{2} \times \frac{4}{7}=1 \times \frac{4}{7}=\frac{4}{7}$

Fractions

Adding \& Subtracting

Adding and subtracting requires that fractions must have the same denominator. If not, we need to find a common denominator (a larger number that has both denominators as factors) and convert the fractions. Then add (or subtract) the two numerators.

Examples: $\frac{1}{7}+\frac{4}{7}=\frac{5}{7}$
$\frac{1}{3}+\frac{1}{4}=\frac{1}{3} \times \frac{4}{4}+\frac{1}{4} \times \frac{3}{3}=\frac{1 \cdot 4}{3 \cdot 4}+\frac{1 \cdot 3}{4 \cdot 3}=\frac{4}{12}+\frac{3}{12}=\frac{7}{12}$
$\frac{17}{20}-\frac{3}{4}=\frac{17}{20} \times \frac{1}{1}-\frac{3}{4} \times \frac{5}{5}=\frac{17 \cdot 1}{20 \cdot 1}-\frac{3 \cdot 5}{4.5}=\frac{17}{20}-\frac{15}{20}=\frac{2}{20}=\frac{1}{10}$

Coordinate plane

- The collection of all points (x, y), such that $x \in(-\infty, \infty)$ and $y \in(-\infty, \infty)$.
- Coordinates (x, y) provide an "address" for a point in \mathbb{R}^{2}.
- The point $(0,0)$ is where the x and y axes intersect and is called the origin.
- Other names: Cartesian plane, two-dimensional (2-D) space, \mathbb{R}^{2}
Examples: $(-8,2),(4,5),(6,-6)$

Equation of a Line

Linear Equations

If we have two pairs of points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, we can find a line between the two points.

A common equation for a line is:

$$
y=m x+b
$$

where m is the slope and b is the \mathbf{y}-intercept. A line is also a way to define a variable y in terms of another variable x.

Another common form (often used in the regression setting) is

$$
y=\beta_{0}+\beta_{1} x
$$

, where β_{0} is the \mathbf{y}-intercept and β_{1} is the slope.

Slopes

The slope is the ratio of the difference in the y-values to the difference in the two x-values for any two points on a line.
Commonly referred to as rise over run.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

- m measures of the steepness of a line, e.g. how high does the line "rise" in " y-land" when we move one unit to the "right" (toward ∞) in "x"-land.
- The sign of m indicates whether we're going "uphill" $(+)$ or "downhill" (-) when we move to the "right" in " x "-land.

Intercepts

The intercept, often denoted b, is the value of y when $x=0$.

- i.e. every line (that isn't a vertical line) has a point $(0, b)$.
- the vertical height where the line crosses the y-axis.

Find the intercept by plugging in one point on the line and the slope into the equation and then solving for the intercept.

$$
y_{1}=m \cdot x_{1}+b \Rightarrow b=y_{1}-m \cdot x_{1}
$$

In a simple linear regression setting β_{0} can be interpreted as the average value of a dependent variable, y, when the dependent variable x is equal to 0 , if 0 is a observed or sensible value of your independent variable.

Find the equation of a line using two points

- Points: $(2,3),(7,5)$:
- Slope: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-3}{7-2}=\frac{2}{5}$
- Intercept: $b=y_{1}-m x_{1}=3-\frac{2}{5} \cdot 2=3-\frac{4}{5}=11 / 5$
- Equation of the line: $y=\frac{2}{5} x+\frac{11}{5}$

Functions and their Limits

A function is a formula or rule of correspondence that maps each element in a set X to an element in set Y.

The domain of a function is the set of all possible values that you can plug into the function. The range is the set of all possible values that the function $f(x)$ can return.

Examples:
$f(x)=x^{2}$

- Domain: all real numbers \mathbb{R}
- Range: zero and all positive real numbers, $f(x) \geq 0$

Functions and their Limits

Examples continued

$$
f(x)=\sqrt{x}
$$

- Domain: zero and all positive real numbers, $x \geq 0$
- Range: zero and all positive real numbers, $x \geq 0$

$$
f(x)=1 / x
$$

- Domain: all real numbers except zero
- Range: all real numbers except zero

Solving Linear Equations

Often we would like to find the root of a linear equation. This is the value of x that maps $f(x)$ to 0 (where the line crosses the x-axis, or the value of x when $y=0$).

$$
f(x)=m x+b
$$

Setting $f(x)=0$, to find the root we need to solve for x.

$$
\begin{aligned}
0 & =m x+b & \text { [subtract } b \text { from both sides] } \\
-b & =m x & \text { [divide both sides by } m \text {] } \\
\frac{-b}{m} & =x &
\end{aligned}
$$

The value $-b / m$ is the root of $f(x)=m x+b$, i.e. most lines (except horizontal lines) have a point $\left(\frac{-b}{m}, 0\right)$ on them.

Solving Linear Equations

Why do we do operations on both sides?
On the previous slide, we subtracted b from both sides or added $-b$ to both sides. Why is that okay?

$$
\begin{aligned}
0 & =m x+b \\
\Rightarrow 0 & =m x+b+(b-b) \\
\Rightarrow-b+0 & =m x+(b-b) \\
\Rightarrow-b & =m x+0 \\
\Rightarrow-b & =m x
\end{aligned}
$$

The number zero is called the additive identity. For any number $a \in \mathbb{R}$,

$$
a+0=a
$$

Solving Linear Equations

Why do we do operations on both sides?
Then, we divided both sides by m or multiplied both sides by $\frac{1}{m}$. Why is that okay?

$$
\begin{aligned}
-b & =m x \\
\Rightarrow-b & =m x \cdot \frac{1 / m}{1 / m} \\
\Rightarrow-b \cdot \frac{1}{m} & =m x \cdot \frac{1}{m} \\
\Rightarrow \frac{-b}{m} & =x
\end{aligned}
$$

The number one is called the multiplicative identity. For any number $a \in \mathbb{R}$,

$$
a \times 1=a .
$$

Solving Linear Equations

Examples

We may be interested in solving linear equations for values other than zero.

Say you are at the Garage on Capitol Hill (pre-Covid) and you have $\$ 40.00$ with you. If shoes are $\$ 7.00$ and a lane is $\$ 11.00 / \mathrm{hr}$ how long can you bowl?
Let's take x is hours and $f(x)$ total price.

$$
f(x)=7+11 x
$$

How long can you bowl?

$$
\begin{aligned}
40 & =11 x+7 \\
40-7 & =11 x \\
33 & =11 x \\
33 / 11 & =3=x
\end{aligned}
$$

Solving Systems of Linear Equations

We often are interested in finding the intersection of two lines or the point (x, y) where two lines cross. This is called solving the system of linear equations.

Suppose we have two equations

$$
y=3+0.6 x y=8-0.8 x
$$

Since these lie on the same plane (i.e. x and y represent the same dimension in both equations), we now have three different ways to "call" y :

- Given name: y
- Nicknames: $3+0.6,8-0.8 x$.

This means

$$
3+0.6 x=8-0.8 x
$$

Solving Systems of Linear Equations

We use the fact that we have two different definitions of y to our advantage. Instead of two equations and two unknowns we now have one equation with one unknown!

$$
\begin{aligned}
3+0.6 x & =8-0.8 x \\
3-3+0.6 x+0.8 x & =8-3-0.8 x+0.8 x \\
1.4 x & =5 \\
x & =5 / 1.4=3.571429
\end{aligned}
$$

The y-value is found by plugging the found value of x into either original equation: $y=3+0.6(3.571429)=5.142857$

Solving Systems of Linear Equations

Supply and Demand

Quadratic Equations

Linear functions of x or lines, always take the form $f(x)=m x+b$, where the maximum power of x is 1 .

A quadratic function has the form $f(x)=a x^{2}+b x+c$, where the maximum power x is raised to is 2 . Quadratic functions often take the shape of parabolas.

Quadratic Examples

Quadratic Equations

Examples

For any quadratic equation $f(x)=a x^{2}+b x+c$, we find the root(s) (values of x such that $f(x)=0$, or where the function crosses the x-axis) by using the quadratic equation:

$$
x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \& \quad x_{1}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

$b^{2}-4 a c$ is called the discriminant. If the discriminant is

- positive, there will be two roots.
- zero, there will be one root.
- negative, there will be no real roots.

Quadratic Equations

Factoring and FOIL

Many quadratic equations can be factored into a more simple form. For example:

$$
2 x^{2}-6 x-8=(x-4)(2 x+2)
$$

To see that they are equivalent we can FOIL to multiply the two terms on the right hand side of the equation.

- First: $x \cdot 2 x=2 x^{2}$
- Outer: $x \cdot 2=2 x$
- Inner: $-4 \cdot 2 x=-8 x$
- Last: $-4 \cdot 2=-8$

Thus, $(x-4)(2 x+2)=2 x^{2}+2 x-8 x-8=2 x^{2}-6 x-8$

Quadratic Equations

Factoring and FOIL

When your quadratic has been factored you can find the roots by solving each term for zero. For example:

$$
2 x^{2}-6 x-8=(x-4)(2 x+2)
$$

has roots when $x-4=0$ and $2 x+2=0$. Thus, the roots are found at $x=-1,4$.

Quadratic Equations

Factoring and FOIL

Hunting for the FOIL factors can be tricky! Remember the quadratic equation always works!!

- If $b^{2}-4 a c$ is a whole number, a fraction, a squared number, then it can be factored into something simple, if not use the quadratic formula.
Examples:
- $2 x^{2}+4 x-16 \Rightarrow b^{2}-4 a c=4^{2}-4 \cdot 2 \cdot(-16)=144 ; 2$ roots; factors
- $3 x^{2}-2 x+9 \Rightarrow b^{2}-4 a c=(-2)^{2}-4 \cdot 3 \cdot 9=-104$; no real roots

Exponents

a^{n} is ' a to the power of n '. a is multiplied by itself n times. Often a is called the base, n the exponent. Examples:

$$
\begin{gathered}
2^{3}=2 \cdot 2 \cdot 2=8 \\
6^{4}=6 \cdot 6 \cdot 6 \cdot 6=1296
\end{gathered}
$$

Exponents do not have to be whole numbers. They can be fractions or negative.
Examples:

$$
\begin{aligned}
& 4^{1 / 2}=\sqrt{4}=2 \\
& 3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}
\end{aligned}
$$

Common Rules

- $a^{1}=a$
- $a^{k} \cdot a^{l}=a^{k+l}$
- $\left(a^{k}\right)^{\prime}=a^{k l}$
- $(a b)^{k}=a^{k} \cdot b^{k}$
- $\left(\frac{a}{b}\right)^{k}=\left(\frac{a^{k}}{b^{k}}\right)$
- $a^{-k}=\frac{1}{a^{k}}$
- $\frac{a^{k}}{a^{l}}=a^{k-1}$
- $a^{1 / 2}=\sqrt{a}$
- $a^{1 / k}=\sqrt[k]{a}$
- $a^{0}=1$

Logarithms

A logarithm is the power (x) required to raise a base (c) to a given number (a).

$$
\log _{c}(a)=x \Rightarrow c^{x}=a
$$

Examples:

- $2^{3}=8 \Rightarrow \log _{2}(8)=3$
- $4^{6}=4096 \Rightarrow \log _{4}(4096)=6$
- $9^{1 / 2}=3 \Rightarrow \log _{9}(3)=\frac{1}{2}$

Logarithms

The three most common bases are 2,10 , and $e \approx 2.718$, the natural logarithm. It is often called Euler's number after Leonhard Euler.
Examples:

- $10^{2}=100 \Rightarrow \log _{10}(100)=2$
- $2^{3}=8 \Rightarrow \log _{2}(8)=3$
- $e^{2}=7.3891 \ldots \Rightarrow \log (7.3891)=2$

The natural logarithm $\left(\log _{e}\right)$ is the most common; used to model exponential growth (populations, etc). If no base is specified, i.e. $\log (a)$, most often the base is e. Sometimes written as $\ln (a)$.

Logarithms

What is e?

The number e is a famous irrational number. The first few digits are $e=2.718282 \ldots$
Two ways to express e :

- $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$
- $\sum_{n=0}^{\infty} \frac{1}{n!}$

Logarithms

Rules

$$
\log _{c}(a \cdot b)=\log _{c}(a)+\log _{c}(b)
$$

$$
\begin{aligned}
x & =\log _{c}(a \cdot b) \Longleftrightarrow c^{x}=a \cdot b \\
& \Rightarrow c^{x_{1}+x_{2}}=a \cdot b \text { where } x_{1}+x_{2}=x \\
& \Rightarrow c^{x_{1}} \cdot c^{x_{2}}=a \cdot b \Rightarrow c^{x_{1}}=a ; c^{x_{2}}=b \\
& \Rightarrow x_{1}=\log _{c}(a) ; x_{2}=\log _{c}(b) \\
& \Rightarrow x=x_{1}+x_{2} \Rightarrow \log _{c}(a \cdot b)=\log _{c}(a)+\log _{c}(b)
\end{aligned}
$$

Logarithms

Rules

$\log _{c}\left(a^{n}\right)=n \cdot \log _{c}(a)$
For $n=2$:

$$
\begin{aligned}
x & =\log _{c}\left(a^{2}\right) \Longleftrightarrow c^{x}=a^{2} \\
& \Rightarrow c^{x_{1}+x_{2}}=a \cdot a \text { where } x_{1}+x_{2}=x \\
& \Rightarrow c^{x_{1}} \cdot c^{x_{2}}=a \cdot a \Rightarrow c^{x_{1}}=a ; c^{x_{2}}=a \\
& \Rightarrow x_{1}=\log _{c}(a) ; x_{2}=\log _{c}(a) \\
& \Rightarrow x=x_{1}+x_{2} \Rightarrow \log _{c}\left(a^{2}\right)=\log _{c}(a)+\log _{c}(a)=2 \cdot \log _{c}(a)
\end{aligned}
$$

Logarithms

Rules

$$
\begin{aligned}
\log _{c}\left(\frac{a}{b}\right)= & \log _{c}(a)-\log _{c}(b) \\
x & =\log _{c}\left(\frac{a}{b}\right) \Longleftrightarrow c^{x}=\frac{a}{b} \\
& \Rightarrow c^{x_{1}+x_{2}}=\frac{a}{b} \text { where } x_{1}+x_{2}=x \\
& \Rightarrow c^{x_{1}} \cdot c^{x_{2}}=\frac{a}{b} \Rightarrow c^{x_{1}}=a ; c^{x_{2}}=\frac{1}{b}=b^{-1} \\
& \Rightarrow x_{1}=\log _{c}(a) ; x_{2}=(-1) \cdot \log _{c}(b) \\
& \Rightarrow x=x_{1}+x_{2} \Rightarrow \log _{c}\left(\frac{a}{b}\right)=\log _{c}(a)-\log _{c}(b)
\end{aligned}
$$

Logarithms

Examples

- $\log _{2}(8 \cdot 4)=\log _{2}(8)+\log _{2}(4)=3+2=5$
- $\log _{10}\left(\frac{1000}{10}\right)=\log _{10}(1000)-\log _{10}(10)=3-1=2$
- $\log _{4}\left(6^{4}\right)=4 \cdot \log _{4}(6)$
- $\log \left(x^{3}\right)=3 \cdot \log (x)$

Exponential Functions

Exponential Functions are of the form $f(x)=a e^{b x}$. Often used as a model for population increase where $f(x)$ is the population at time x.

Logarithmic Functions

Logarithmic Functions, $f(x)=c+d \cdot \log (x)$, can be used to find the time $f(x)$ necessary to reach a certain population x. It can be thought of as an 'inverse' of the exponential function.

Note: $c=-1 / b \cdot \log (a)$ and $d=1 / b$ from the previous exponential model.

Continuous \& Piecewise Functions

A continuous function behaves without break or interruption. If you can follow the ENTIRE graph of a function with your pencil without picking it up, the function is continuous. Examples:

- $f(x)=x^{2}$
- $f(x)=x+4$

A piecewise functioncan either have 'jumps' in it or can be made up of different functions for different parts of the domain (possible x-values). Example:

- Absolute Value $f(x)=|x|$ can be written as $f(x)=x, x \geq 0$ and $f(x)=-x, x<0$

Limits

Often we are interested in what a function does as it approaches a certain value. This behavior is called the limit.

The limit of $f(x)$ as x approaches a is L :

$$
\lim _{x \rightarrow a} f(x)=L
$$

It may be that a is not in the domain of $f(x)$ but we can still find the limit by seeing what value $f(x)$ is approaching as x gets very close to a. Examples:

- $\lim _{x \rightarrow 3} x^{2}=9$ (3 is in the domain)
- $\lim _{x \rightarrow \infty}(1+1 / x)^{x}=e$

Limits

Often limits are different depending on the direction from which you approach a. The limit 'from above' is approaching from the right $(x \downarrow a)$ and the limit 'from below' $(x \uparrow a)$ is approaching from the left.

If $f(x)=\frac{1}{x-1}$ we have $\lim _{x \downarrow 1} \frac{1}{x-1}=\infty$ and $\lim _{x \uparrow 1} \frac{1}{x-1}=-\infty$

Breakout rooms

- 11-11:10: Introductions + Work on PS 1
- 11:10-11:20: Go over problems in breakout rooms
- 11:20-11:30: Reconvene in main room

