Center for Statistics and the Social Sciences

 Math Camp 2021Lecture 2: Matrix Algebra

Peter Gao \& Jessica Kunke

Department of Statistics University of Washington

September 14, 2021

Outline

Matrix Algebra

- Definitions, notation
- Matrix Operations
- Determinants - existence of an inverse
- Linear equations
- Least Squares and Regression with matrices

Motivation

Matrix algebra provides concise notation and rules for manipulating matrices (arrays of numbers).

Matrix algebra will be important for computing linear regression estimates.

Motivation

Example data.frame in R :

u5m region years
$\left(\begin{array}{ccc|cccc}1 & & \text { All } & 80-84 & 0.1691030 & 0.1573394 & 0.1815566 \\ 2 & \text { All } & 85-89 & 0.1603335 & 0.1490694 & 0.1722763 \\ 3 & \text { All } & 90-94 & 0.1208087 & 0.1079371 & 0.1349829 \\ 4 & \text { tanga } & 80-84 & 0.1810487 & 0.1369700 & 0.2354425 \\ 5 & \text { tanga 85-89 } & 0.2230574 & 0.1677716 & 0.2902086\end{array}\right]$

- region: Regions in Tanzania
- years: time, measured in 5-year periods
- u5m: estimated under-five mortality rate
- lower: lower end of confidence band
- upper: upper end of confidence band

Definitions \& Notation

What is a matrix?

A matrix is an array of number is a rectangular form. Examples:

$$
A=\left[\begin{array}{cccc}
1 & 2 & 6 & 4 \\
5 & 8 & 12 & 8 \\
4 & 3 & 2 & 1
\end{array}\right] B=\left[\begin{array}{lll}
4 & 3 & 2 \\
1 & 2 & 4
\end{array}\right]
$$

where A is a 3×4 matrix and B is a 2×3 matrix. Note: matrix dimensions, $(n \times m)$ are always listed as rows \times columns.

- Notation: Often A is written $A_{n \times m}$.

$$
B_{2 \times 3}
$$

Definitions \& Notation

What is a matrix?

In mathematical notation, a matrix is written

$$
X=\left[\begin{array}{rrr}
\nleftarrow & \not \subset & \nsucc \\
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right]
$$

Where $x_{i j}$ is the value in the i th row and the jth column of matrix X.

Examples

What is a matrix?

A matrix is an array of number is a rectangular form. Examples:

- What are the dimensions of A ? 2×4 2rows \times 4colvmns
- What is What is a_{21} ?

$$
\begin{aligned}
& a_{12}=2 \\
& a_{21}=S
\end{aligned}
$$

Definitions \& Notation

Special Matrices

n observations

$$
\text { for } 1 \text { variable }
$$

A vector is a matrix that has $[n$ rows and 1 column $]$ (or 1 row and n columns).
Examples:

A square matrix has the same number of rows and columns.
Example:

$$
\left[\begin{array}{ll}
4 & 3 \\
1 & 2
\end{array}\right]
$$

Definitions \& Notation

Special Matrices

A symmetric matrix has elements such that $x_{i j}=x_{j i}$. Example:

$$
\left[\begin{array}{lll}
1 & 4 & 5 \\
4 & 2 & 3 \\
5 & 3 & 7
\end{array}\right]
$$

A symmetric matrix must also be a square matrix.

Definitions \& Notation

Special Matrices

A diagonal matrix is a matrix that is zero everywhere except on the diagonal. Where the diagonal is defined as all elements for which the row number is equal to the column number $\{(1,1),(2,2),(3,3), \ldots\}$.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 7
\end{array}\right]
$$

A special case of a diagonal matrix is the identity matrix. Its diagonal elements are all ones.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Clearly, the identity matrix (or any other diagonal matrix) is also symmetric.

Matrix Operations

Basic Operations

Matrix Equality: Two matrices A, B are equal if and only if, for all elements, each $a_{i j}=b_{i j}$. (Note: this means they must have the same dimensions.)

Matrix Transpose: The transpose of a matrix is found by interchanging the corresponding rows and columns of a matrix. The first row becomes the first column, the second row becomes the second column, etc. The dimensions are then switched and the element $a_{i j}$ becomes the element $a_{j i}$. The transposed matrix is often denoted A^{t} (or A^{\prime}). You can find the transpose of a matrix in R by using the t () function.

$$
A=\left[\begin{array}{lll}
1 & 2 & 6 \\
3 & 5 & 9
\end{array}\right] \quad A^{t}=\left[\begin{array}{ll}
1 & 3 \\
2 & 5 \\
6 & 9
\end{array}\right]
$$

Matrix Operations

Addition \& Subtraction

Two matrices can be added or subtracted only if their dimensions are the same (both rows and columns). The corresponding elements are then added or subtracted.

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]+\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right]
$$

Example:

$$
\left[\begin{array}{lll}
1 & 2 & 6 \\
3 & 5 & 9
\end{array}\right]-\left[\begin{array}{lll}
1 & 3 & 8 \\
6 & 9 & 6
\end{array}\right]=\left[\begin{array}{ccc}
0 & -1 & -2 \\
-3 & -4 & 3
\end{array}\right]
$$

Matrix Operations

Scalar Multiplication

To multiply a matrix by a scalar (a constant value; any $a \in \mathbb{R}$), multiply each element by that number.
Example:

$$
A=\left[\begin{array}{lll}
1 & 3 & 8 \\
6 & 9 & 6
\end{array}\right] \quad 3 A=\left[\begin{array}{ccc}
3 & 9 & 24 \\
18 & 27 & 18
\end{array}\right]
$$

Matrix Operations

Multiplication Examples

Two matrices $A_{n_{A} \times m_{A}}$ and $B_{n_{B} \times m_{B}}$ can be multiplied only if the number of columns of the first matrix, m_{A}, equals the number of rows of the second matrix, n_{B}, i.e. the "inside numbers".
The resulting matrix, $(A \cdot B)_{n_{A} \times m_{B}}$ or $(A B)_{n_{A} \times m_{B}}$ has n_{A} rows and m_{B} columns, i.e. the "outside numbers".

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right] \quad B=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right]
$$

A is (2×3); B is (3×2).
$B \cdot A$ is computable and has dimension $3 \times 2 \cdot 2 \times 3=3 \times 3$.
$A \cdot B$ is computable and has dimension $2 \times 3 \cdot 3 \times 2=2 \times 2$.

Matrix Operations

Multiplication Examples

To compute $A_{2 \times 3} \cdot B_{3 \times 2}$, we find each element $(a b)_{i j}$ by summing the crossproducts of the th row of A and the j th column of B.

$$
\begin{gathered}
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right] \quad B=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right] \\
A \cdot B=\left[\begin{array}{ll}
a_{11} \cdot b_{11}+a_{12} \cdot b_{21}+a_{13} \cdot b_{31} & a_{11} \cdot b_{12}+a_{12} \cdot b_{22}+a_{13} \cdot b_{32} \\
a_{21} \cdot b_{11}+a_{22} \cdot b_{21}+a_{23} \cdot b_{31} & a_{21} \cdot b_{12}+a_{22} \cdot b_{22}+a_{23} \cdot b_{32}
\end{array}\right]
\end{gathered}
$$

Matrix Operations

Multiplication Examples

Examples:

$$
\left.\begin{array}{c}
A=\left[\begin{array}{lll}
1 & 3 & 8 \\
6 & 9 & 6 \\
2 & 1 & 3
\end{array}\right] \quad B=\left[\begin{array}{ll}
3 & 9 \\
2 & 1 \\
3 & 2
\end{array}\right] \\
A B=\left[\begin{array}{l}
1 \cdot 3+3 \cdot 2+8 \cdot 3 \\
6 \cdot 3+9 \cdot 2+6 \cdot 3 \\
6 \cdot 9 \cdot 1+8+9 \cdot 2 \\
2 \cdot 3+1 \cdot 2+3 \cdot 3
\end{array} 2 \cdot 9+1 \cdot 1+3 \cdot 2\right. \\
2 \cdot 2
\end{array}\right]=\left[\begin{array}{ll}
33 & 28 \\
54 & 75 \\
17 & 25
\end{array}\right] \quad \text {. } 2+1
$$

Matrix Multiplication

Order Matters

$$
A=\left[\begin{array}{lll}
1 & 3 & 8 \\
6 & 9 & 6 \\
2 & 1 & 3
\end{array}\right] \quad B=\left[\begin{array}{ll}
3 & 9 \\
2 & 1 \\
3 & 2
\end{array}\right]
$$

- $A \cdot B$ is not necessarily equal to $B \cdot A$, as with scalar multiplication.

This is called the commutative property: $4 \times 2=2 \times 4=8$.

- $B \cdot A$ cannot be computed as the dimensions are not compatible: $3 \times 2 \cdot 3 \times 3$.

The "inside numbers" are not equal: $m_{B} \neq n_{A}$.

Matrix Operations

Inverse
We need something that "looks like" scalar division.
The multiplicative inverse of a scalar, $a \in \mathbb{R}$, is the number, a^{-1} such that $a \times a^{-1}$ equals the multiplicative identity, e.g.

$$
a \times a^{-1}=1
$$

We know then that, $a^{-1}=\frac{1}{a}$, or

$$
a \times \frac{1}{a}=1
$$

This gives us the notion of division or multiplying by a fraction.
For example,

$$
\begin{gathered}
4 \cdot 1 / 4=1 \\
10 \div 5=10 \times \frac{1}{5}=2 \times 5 \times \frac{1}{5}=2
\end{gathered}
$$

Matrix Operations

The inverse of a matrix $A_{n \times n}$ is the matrix $A_{n \times n}^{-1}$ that satisfies

$$
A \cdot A^{-1}=I
$$

$I_{n \times n}$ is the identity matrix. It has ones along the diagonal and zeroes everywhere else.

$$
I_{3 \times 3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Like the multiplicative identity, any matrix multiplied by I is itself:

$$
A \times I=I \times A=A .
$$

Matrix Operations

Determinant

How do we find the inverse? How do we know if the inverse exists? The determinant is a measure, in a sense, of the "volume" of the matrix.
For a 2×2 matrix,

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

the determinant is $D(A)=a \cdot d-b \cdot c$.

- If $D(A)=0, A^{-1}$ does not exist. A is singular. There is no "volume" to the matrix.
- If $D(A) \neq 0, A^{-1}$ exists. A is nonsingular.

Matrix Operations

Determinant

Examples:

$$
A=\left[\begin{array}{cc}
4 & 12 \\
3 & 6
\end{array}\right]
$$

$D(A)=4 \cdot 6-12 \cdot 3=-12$. Inverse exists. Matrix is nonsingular.

$$
A=\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]
$$

$D(A)=2 \cdot 2-4 \cdot 1=0$. Inverse does not exist. Matrix is singular.

Matrix Operations

Inverse Example

If the inverse, A^{-1}, exists for $A_{2 \times 2}$ computing it easy.
For higher dimensions let a computer do it.
The function solve() computes matrix inverses in R.
Inverting big matrices can take a lot of computing power.

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad A^{-1}=\frac{1}{D(A)}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Recall: $D(A)=a \cdot d-b \cdot c$.

Matrix Operations

Inverse Example

$$
A^{-1}=\frac{1}{D(A)}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Example:

$$
A=\left[\begin{array}{cc}
4 & 12 \\
3 & 6
\end{array}\right], \quad A^{-1}=\frac{1}{-12}\left[\begin{array}{cc}
6 & -12 \\
-3 & 4
\end{array}\right]=\left[\begin{array}{cc}
-1 / 2 & 1 \\
1 / 4 & -1 / 3
\end{array}\right]
$$

Linear Equations

Let's go back to thinking about systems of two equations:

$$
\begin{aligned}
& a x+b y=g \\
& c x+d y=f
\end{aligned}
$$

Previously we solved this system by eliminating the y variable, solving for x, and then substituting back in for y.

No we can write this system in matrix notation:

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad z=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad w=\left[\begin{array}{l}
g \\
f
\end{array}\right]
$$

Solving our system of equations is the same as solving for z in the matrix equation:

$$
A \cdot z=w
$$

Linear Equations

Examples

Solving our system of equations is the same as solving for z in the matrix equation:

So how do we solve for z ?

$$
\begin{aligned}
A \cdot z & =w \\
A \cdot z & =A^{-1} \cdot w \\
I \cdot z & =A^{-1} \cdot w \\
z & =A^{-1} \cdot w .
\end{aligned}
$$

$$
A^{-1} \cdot A \cdot z=A^{-1} \cdot w \quad\left[\text { Left-multiply by } A^{-1}\right]
$$

$$
\left[A^{-1} \times A=1\right]
$$

The solution to our system is $z=A^{-1} \cdot w=\left[\begin{array}{l}x \\ y\end{array}\right]$.

Linear Equations

Examples

$$
\begin{gathered}
2 x+y=1 \\
4 x+3 y=8 \\
A=\left[\begin{array}{ll}
2 & 1 \\
4 & 3
\end{array}\right], \quad z=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad w=\left[\begin{array}{l}
1 \\
8
\end{array}\right] \\
A^{-1}=\frac{1}{2 \cdot 3-4 \cdot 1}\left[\begin{array}{cc}
3 & -1 \\
-4 & 2
\end{array}\right]=\left[\begin{array}{cc}
3 / 2 & -1 / 2 \\
-2 & 1
\end{array}\right] \\
z=A^{-1} \cdot w=\left[\begin{array}{cc}
3 / 2 & -1 / 2 \\
-2 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
8
\end{array}\right]=\left[\begin{array}{c}
3 / 2 \cdot 1+-1 / 2 \cdot 8 \\
-2 \cdot 1+1 \cdot 8
\end{array}\right]=\left[\begin{array}{c}
-5 / 2 \\
6
\end{array}\right]
\end{gathered}
$$

Linear Regression and Least Squares

The goal of linear regression is estimate the intercept and slope in a linear relationship between an independent variable or covariate X and a dependent variable or outcome, Y. In other words, we want to fit a line through pairs of points $\left(x_{i}, y_{i}\right)$ for observations $i=1, \ldots, n$.
What do we do when $n>2$? What if we have more than one independent variable?
Suppose we conduct a survey where we asked n people the same p questions. We can put that organize that data in a matrix of dimensions $n \times p$, where each row is a person and each column is the numerical response to one of the asked questions.

Least Squares

Simple Linear Regression Example

Least Squares

So how do we choose the dashed line?
We can write the equation:

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\ldots+\beta_{p} x_{p i}
$$

- number observations: $i=1, \ldots, n$
- number independent variables: $j=1, . ., p$
- intercept: β_{0}
- slope: β_{j} for each x_{j}

Least Squares

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\ldots+\beta_{p} x_{p i}
$$

In matrix notation:

$$
y=X \beta=\left[\begin{array}{c}
y_{1} \\
\ldots \\
y_{n}
\end{array}\right]=\left[\begin{array}{cccc}
1 & x_{11} & \ldots & x_{1 p} \\
1 & \ldots & \ldots & \ldots \\
1 & x_{n 1} & \ldots & x_{n p}
\end{array}\right] \cdot\left[\begin{array}{c}
\beta_{0} \\
\ldots \\
\beta_{p}
\end{array}\right]
$$

- $y_{n \times 1}$ is the response.
- $X_{n \times(p+1)}$ is the design matrix.

Notice the column of 1's so that each observation's model includes a β_{0}.

- $\beta_{(p+1) \times 1}$ are the unknown coefficients we want to estimate.

Least Squares

How do we choose/estimate $\beta_{(p+1) \times 1}$?
Least squares finds the line that minimizes the squared distance between the points and the line, i.e. makes

$$
\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{1 i}+\cdots+\beta_{p} x_{p i}\right)\right]^{2}
$$

as small as possible for all $i=1, \ldots, n$.
The vector $\widehat{\beta}$ that minimizes the sum of the squared distances is

$$
\widehat{\beta}=\left(X^{t} \cdot X\right)^{-1} X^{t} y
$$

Note: In statistics, once we have estimated a parameter we put a "hat" on it, e.g. $\widehat{\beta_{0}}$ is the estimate of the true parameter β_{0}.

Least Squares

$$
\widehat{\beta}=\left(X^{t} \cdot X\right)^{-1} X^{t} y .
$$

To see this:

$$
\begin{aligned}
y_{n \times 1} & =X_{n \times(p+1)} \beta_{(p+1) \times 1} & & \\
X^{t} y & =X^{t} X \beta & & {\left[X \text { isn't square, } X^{-1} \text { doesn't exist! }\right] } \\
\left(X^{t} X\right)^{-1} X^{t} y & =\left(X^{t} X\right)^{-1} X^{t} X \beta & & \\
\left(X^{t} X\right)^{-1} X^{t} y & =l \cdot \beta & & {\left[\left(X^{T} X\right) \text { is square and invertible. }\right] } \\
\beta & =\left(X^{t} \cdot X\right)^{-1} X^{t} y & &
\end{aligned}
$$

Least Squares

Simple linear regression example in R

Truth:

$$
y_{i}=1+2 \cdot x_{i}+\varepsilon_{i}
$$

where $\varepsilon_{i} N\left(0,3^{2}\right)$ is thought of as noise or measurement error.
set.seed (1985)
beta_0<-1
beta_1<-2
$\mathrm{n}<-30$
$x<-r u n i f(n, 0,5)$
$\mathrm{y}<-\mathrm{rnorm}(\mathrm{n}$, mean=beta_1*x+beta_0,sd=3)
plot(x, y)

Least Squares

Simulated Data

Least Squares

with matrices in R

R functions and operators:

- inverse: solve()
- transponse: t()
- matrix multiplication: $\%$ * $\%$
X.mat<-matrix(c(rep(1,n),x),ncol=2)

Beta.mat<-solve(t(X.mat) \% \% \% (X.mat)) \% \% \% t(X.mat) \% $\% \%$ y
First two rows of design matrix, X, and coefficients, $\widehat{\beta}$, estimated via least squares.
X.mat $[1: 2$,
[,1] [,2]
[1,]
13.319174
11.325468
[2,] 1.590737

Least Squares

Figure: Our data with the fitted line $y=1.59 x+1.96$.

Least Squares

Figure: Our data with the fitted line $y=1.96+1.59 x$ and the true line $y=1+2 x$.

