Center for Statistics and the Social Sciences

 Math Camp 2021Lecture 4: Integral Calculus

Peter Gao \& Jessica Kunke

Department of Statistics
University of Washington

September 15, 2021

Outline

- Motivation for Integrals
- Rules of Integration
- Lots of Examples

Motivation for Integrals in Statistics

Standard Normal Density

Figure: Standard Normal Density ($\mathrm{N}(0,1)$). Approximately 68% of the probability lies within 1 standard deviation and 95% within 2 standard deviations. The area under the whole curve (from $-\infty$ to ∞) is 1 .

Motivation for Integrals in Statistics

Integral calculus...

- is a tool for computing areas under curves.
- can be used to compute percentile rankings.
- is also used to compute probabilities of events.
- will be needed to compute the expected values and variance of probability distributions.
- is heavily used in statistical theory!

Motivation for Integrals in Statistics

What if we wanted to find the area under the curve from -2 to -0.5 ?

Motivation for Integrals in Statistics

We could approximate with rectangles or trapezoids. Narrower rectangles would give better approximations.

Standard Normal Density

Differentiation Example

distance, velocity, acceleration

Let's take $d=$ distance, $v=$ velocity, $a=$ acceleration. You may remember from physics, the distance travel after time t

$$
d(t)=\frac{a}{2} t^{2}
$$

The velocity at any time t is the instantaneous rate of change of the distance, $v(t)=d^{\prime}(t)$:

$$
v(t)=2 \cdot \frac{a}{2} t=a t
$$

The acceleration at any time t is the instantaneous rate of change of the velocity, $a(t)=V(t)=d^{\prime \prime}(t)$:

$$
a(t)=a
$$

Distance

Figure: Distance over time, when $a(t)=2, v(t)=2 t$, and $d(t)=t^{2}$.

Velocity

Velocity

Figure: Velocity over time, when $a(t)=2, v(t)=2 t$, and $d(t)=t^{2}$.

Acceleration

Acceleration

Figure: Acceleration over time, when $a(t)=2, v(t)=2 t$, and $d(t)=t^{2}$.

What is the velocity at $t=3$ when $a=2$?

We know that $v(t)=2 t$, so clearly

$$
v(3)=2 \cdot 3=6
$$

However we can also find the velocity, by looking at the area under the acceleration curve from $t=0$ to $t=3$. This would just be the area of a rectangle (base X height),

$$
(3-0) \cdot 2=3 \cdot 2=6
$$

What is the velocity at $t=3$ when $a=2$?

What is the distance at $\mathrm{t}=3$ when $\mathrm{a}=2$?

We know that $d(t)=2 / 2 t^{2}=t^{2}$, so clearly

$$
d(3)=3^{2}=9
$$

However we can also find the distance, by looking at the area under the velocity curve from $t=0$ to $t=3$. This would just be the area of a triangle ($1 / 2 \mathrm{X}$ base X height),

$$
1 / 2 \cdot(3-0) \cdot 6=3 / 2 \cdot 6=18 / 2=9
$$

What is the distance at $\mathrm{t}=3$ when $\mathrm{a}=2$?

Integration

The area under a curve is written:

$$
\int_{a}^{b} f(x) d x
$$

This formula is called the definite integral of $f(x)$ from a to b.
Here a and b are our endpoints of interest. You can think of the integral as the 'opposite' of the derivative.

Integration

More specifically,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) \text { where } F^{\prime}(x)=f(x)
$$

$F(x)$ is called the indefinite integral of $f(x)$. The important relationships between derivatives and integrals are:

$$
F^{\prime}(x)=f(x) \quad \& \quad \int f(x) d x=F(x)
$$

What is an integral?

You can think of integrating as looking at a derivative and trying to find the original function.

- $\int 3 d x$. What function has a derivative equal to 3 ? $3 x$.
- $\int 2 x d x$. What function has a derivative equal to $2 x$? x^{2}.
- $\int e^{x} d x$. What function has a derivative equal to e^{x} ? e^{x}. In practice, you don't have to search for the right function. We have handy shortcuts (rules).

Integration Rules

Integrating a Constant

$$
\int c d x=c x
$$

Examples:

- $\int 1 d x=x$
- $\int 6 d x=6 x$
- $\int y d x=y x$

Integration Rules

Integrating a Power of x

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}
$$

Examples:

- $\int x d x=\frac{1}{2} x^{2}$
- $\int \frac{1}{x^{2}} d x=\int x^{-2} d x=\frac{1}{-1} x^{-1}=-\frac{1}{x}$

Integration Rules

Integrating an Exponential and Logarithmic Functions

Exponential:

$$
\int e^{x} d x=e^{x}
$$

(Natural) Logarithm:

$$
\int \frac{1}{x} d x=\log (x)
$$

Integration Rules

Basic Trigonometric Functions

Remember, $\frac{d}{d x} \cos (x)=-\sin (x)$, thus

$$
\int \sin (x) d x=-\cos (x)
$$

and $\frac{d}{d x} \sin (x)=\cos (x)$, thus

$$
\int \cos (x) d x=\sin (x)
$$

Integration Rules

Multiple of a Function

$$
\int a f(x) d x=a \cdot \int f(x) d x=a F(x)
$$

Examples:

- $\int 4 x^{2} d x=4 \int x^{2} d x=4\left(\frac{1}{3} x^{3}\right)=\frac{4}{3} x^{3}$
- $\int \frac{3}{x^{2}} d x=3 \int \frac{1}{x^{2}} d x=3 \int x^{-2} d x=\frac{3}{-1} x^{-1}=-\frac{3}{x}$
- $\int \mu y d y=\mu \int y d y=\mu\left(\frac{1}{2} y^{2}\right)=\frac{\mu}{2} y^{2}$

Integration Rules

Sums of Functions

$$
\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x=F(x)+G(x)
$$

Examples:

- $\int 4 x+3 x^{2} d x=\int 4 x d x+\int 3 x^{2} d x=4 \int x d x+3 \int x^{2} d x=$ $4 \cdot \frac{1}{2} x^{2}+3 \cdot \frac{1}{3} x^{3}=2 x^{2}+x^{3}$
- $\int e^{x}-\frac{2}{x} d x=\int e^{x} d x-2 \int \frac{1}{x} d x=e^{x}-2 \log (x)$

Integration Rules

u-substitution

Sometimes the function we are integrating is similar to a simpler function with an easy derivative.

For example, $\int \frac{1}{1-x} d x$ is similar to $\int \frac{1}{x} d x$ which we know is $\log (x)$. Similar to the chain rule, we can think about functions within functions.

Let's set $u=1-x$. If we differentiate the left with respect to u and the right with respect to x we have $d u=-1 d x$. Solving for $d x$ we have $d x=-1 d u$. Now we can substitute these values into our original integral.

$$
\int \frac{1}{1-x} d x=\int \frac{1}{u} \cdot(-1) d u=-1 \int \frac{1}{u} d u
$$

Integration Rules

u-substitution continued

Now let's take the integral with respect to u :

$$
\int \frac{1}{1-x} d x=-1 \int \frac{1}{u} d u=-\log (u)
$$

Then we can plug in the value for $u=1-x$:

$$
\int \frac{1}{1-x} d x=-1 \int \frac{1}{u} d u=-\log (u)=-\log (1-x)
$$

Integration Rules

u-substitution continued
Example:

$$
\int(2 x+4)^{3} d x
$$

We can take $u=2 x+4$. Then $d u=2 d x$ or $\frac{1}{2} d u=d x$.
When we make the substitutions in our integral we have:

$$
\int(2 x+4)^{3} d x=\int u^{3} \cdot \frac{1}{2} d u=\frac{1}{2} \int u^{3} d u
$$

Now we have an integral we can easily compute

$$
\frac{1}{2} \int u^{3} d u=\frac{1}{2} \cdot \frac{1}{4} u^{4}=\frac{1}{8} u^{4}
$$

and then we just need to substitute back in for the functions of x.

$$
\int(2 x+4)^{3} d x=\frac{1}{2} \int u^{3} d u=\frac{1}{8} u^{4}=\frac{1}{8}(2 x+4)^{4}
$$

Finding Definite Integrals

Often we will be interested in knowing the exact area under the curve $f(x)$, not just the function $F(x)$.

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

Examples:

- $\int_{0}^{1} x^{2} d x=\left.\frac{1}{3} x^{3}\right|_{0} ^{1}=\frac{1}{3} 1^{3}-\frac{1}{3} 0^{3}=\frac{1}{3}$
- $\int_{0}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{\infty}=-e^{-\infty}--e^{0}=-\frac{1}{e^{\infty}}+e^{0}=1$
- $\int_{2}^{8} \frac{1}{x} d x=\left.\log (x)\right|_{2} ^{8}=\log (8)-\log (2)=\log \left(\frac{8}{2}\right)=\log (4)$

Integration Example

distance, velocity, acceleration
Back to our original example, with $a=2$. The velocity at any time $t=3$ is the definite integral of of the acceleration, $v(3)=\int_{0}^{3} a(t) d t$:

$$
v(3)=\int_{0}^{3} 2 d t=\left.2 t\right|_{0} ^{3}=2 \cdot 3-2 \cdot 0=(3-0) \cdot 2=6
$$

Similarly, the distance at any time $t=3$ is the definite integral of of the velocity, $d(3)=\int_{0}^{3} v(t) d t$:

$$
d(3)=\int_{0}^{3} v(t) d t=\int_{0}^{3} 2 t d t=\left.t^{2}\right|_{0} ^{3}=3^{2}-0^{2}=9
$$

Example

$$
\int_{0}^{3} e^{x / 3} d x
$$

We could take $u=x / 3$. Then $d u=1 / 3 d x$ and $3 d u=d x$.
When we substitute in for u and $d x$ it is important to note that we must also substitute in for our limits of integration. The lower value $u=0 / 3=0$ and the upper value would be $u=3 / 3=1$.

$$
\int_{0}^{3} e^{x / 3} d x=\int_{0}^{1} e^{u} \cdot 3 d u=3 \int_{0}^{1} e^{u} d u=\left.3 e^{u}\right|_{0} ^{1}=3\left(e^{1}-e^{0}\right)=3(e-1)
$$

The End

Questions?

