Center for Statistics and the Social Sciences Math Camp 2021
 Lecture 8: Continuous Distributions

Peter Gao \& Jessica Kunke

Department of Statistics
University of Washington

September 16, 2021

Outline

$$
X \in(a, b)
$$

A continuous random variable could have a number of different probability distributions. Today we will focus on the following continuous distributions.

- Uniform
- Univariate Normal
- Chi-Square
- Exponential

Uniform Distribution

Discrete

A uniform probability distribution assigns equal probability to every possible value for the random variable. A uniform distribution may be discrete or continuous.
A discrete uniform random variable takes on a finite number of values.

Examples:

- Let X be a random integer between 1 and 10 .

$$
X \in\{1,2,3, \ldots, 10\} \text { and } P\left(X=x_{i}\right)=\frac{1}{10}, i=1, \ldots, 10
$$

- Let Y be the outcome of a die roll.

$$
\underbrace{Y \in\{1,2,3,4,5,6\}} \text { and } P\left(Y=y_{i}\right)=\frac{1}{6} \quad i=1, \ldots, 6
$$

Uniform Distribution

A continuous uniform random variable takes on values on any continuous interval (a, b) where $a, b \in \mathbb{R}$.

- RECALL: $P(X=x)=0$ for any x when X is continuous
- However, $P(c<X<d) \neq \frac{d-c}{b-a}$ for all numbers $c, d \in(a, b)$
- $P(c<X<d)$ is equaifor all numbers c, d that are the same
distance apart. \quad potit (x)

Expectations

Continuous Random Variables

Recall our definition of the expectation for discrete random variables:

$$
E[X]=\sum_{i=1}^{n} P\left(\underline{X=x_{i}}\right) \cdot x_{i}=\sum_{i=1}^{n} p_{i} \cdot x_{i}
$$

We can extend this definition to continuous distributions. If we divide up the real line into very small intervals, we can estimate $E[X]$ with

$$
E[X] \neq \overline{\sum_{i=1}^{n} \underline{P\left(x_{i}<X<x_{i+1}\right) \cdot x_{i}}}
$$

By letting $n \rightarrow \infty$ or the distance between each x_{i} and x_{i+1} get smaller, ie. $\overline{x_{i+1}}-x_{i} \rightarrow 0$, we obtain:

Expectations

Continuous Random Variables

Example, continuous uniform distribution on $[0,5] . f(x)=1 / 5$ for $x \in[0,5]$.

$$
\begin{aligned}
E[X] & =\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{5} x \cdot 1 / 5 d x=1 / 5 \int_{0}^{5} x d x \\
& =1 / 5\left[x^{2} / 2\right]_{0}^{5}=1 / 10\left[5^{2}-0^{2}\right]=25 / 102.5
\end{aligned}
$$

Variance

Continuous Random Variables

We can extend the formula for the variance to continuous random variables in the same way. Recall the formula for the variance for a discrete distribution:

$$
\operatorname{Var}[X]=\sum_{i=1}^{n}\left(x_{i}-E[X]\right)^{2} \cdot P\left(X=x_{i}\right)=\sum_{i=1}^{n}(\underbrace{\left.x_{i}-E[X]\right)^{2}} \cdot \underbrace{p_{i}}
$$

Following the arguments we used for the expectation, we obtain the following formula for the variance:

$$
\operatorname{Var}[X]=\int_{-\infty}^{\infty}(x-E[X])^{2} f(x) d x
$$

Variance

Continuous Random Variables

Example, continuous uniform distribution on $[0,5] . \mid f(x)=1 / 5$ for $x \in[0,5]$. Previously we found that $E[X]=2.5$.

$$
\begin{aligned}
\operatorname{Var}[X] & =\int_{-\infty}^{\infty}(x-E[X])^{2} f(x) d x=\int_{0}^{5}(x-2.5)^{2} \cdot 1 / 5 d x \\
& =1 / 5 \int_{0}^{5}(x-2.5)^{2} d x=1 / 5\left[\frac{1}{3}(x-2.5)^{3}\right]_{0}^{5} \\
& =1 / 15\left[(5-2.5)^{3}-(0-2.5)^{3}\right]=31.25 / 15=2.0833
\end{aligned}
$$

Continuous Uniform

Expectation \& Variance

In general, for $X \sim \operatorname{Uniform}(a, b)$ has probability density function (pdf)

and

$$
E[X]=\frac{a+b}{2} \quad V[X]=\frac{(b-a)^{2}}{12}
$$

Example, $X \sim \operatorname{Uniform}(0,5)$.

$$
E[X]=\frac{5-0}{2}=2.5 \& V[X]=\frac{(5-0)^{2}}{12}=\frac{25}{12}=2.083
$$

Normal Distribution

The Gaussian or normal distribution is the most commonly used distribution in statistics.

- looks much like a bell curve

- often used to represent gutions population means The larger n gets, the distribution of \bar{X} looks more and more like a normal \Rightarrow confidence intervals.

Probability density function (pdf):

- variance, σ^{2},
p standard deviation, σ, square root of the variance

Normal Distributions

$$
N\left(\mu, \sigma^{2}\right)
$$

Normal Distributions

Standard Normal Distribution

$$
N(0,1)
$$

Standard Normal Distributions

Standard Normal Distribution

68-95-99 Rule

In order to find $P(a<X<b)$ or the area under $f(x)$ between $x=a$ and $x=b$ we need to integrate the probability distribution function of a Normal distribution. This is a difficult integral to compute (by hand). A common approach is to standardize a distributions

If $X \sim N\left(\mu, \sigma^{2}\right)$, to standardize the distribution to look like a $Z \sim N(0,1)$ we need to define a random variable

$$
\mathbb{Z}=\frac{x-\mu}{\sigma} . \quad Z \sim N(0, l)
$$

We have subtracted the mean and divided by the standard deviation.

Standard Normal Distribution

$$
Y=a X+b \Rightarrow E[Y]=a E[X]+b \operatorname{Var}(Y)=a^{2} \operatorname{Var}(X)
$$

If $X \sim N\left(\mu, \sigma^{2}\right)$, then $E[X]=\mu$ and $\operatorname{Var}[X]=\sigma^{2}$.
For $Z=\frac{X-\mu}{\sigma}$,

$$
E[Z]=E\left[\frac{X-\mu}{\sigma}\right]=\frac{E[X]-\mu}{\sigma}=\frac{\mu-\mu}{\sigma}=0
$$

$$
\operatorname{Var}[Z]=\operatorname{Var}\left[\frac{X-\mu}{\sigma}\right]=\frac{1}{\sigma^{2}} \operatorname{Var}[X-\mu]=\frac{1}{\sigma^{2}} \operatorname{Var}[X]=\frac{\sigma^{2}}{\sigma^{2}}=1
$$

Standard Normal Distribution

Example
If $X \sim N(3,4)$ what is $P(5<X<7)$? Let's define $Z=\frac{X-\mu}{\sigma}$ as we know.

$$
\begin{aligned}
P(5<X<7) & =P(5-\mu<X-\mu<7 \neq \mu) \\
& =P\left(\frac{5-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{7-\mu}{\sigma}\right) \\
& \left.=P\left(\frac{5-3}{2}\right)<Z<\frac{7-3}{2}\right) \\
& P(1<Z<2)
\end{aligned}
$$

$=0.136$ [From slide 13, or pnorm(2) - pnorm(1) in R.]

$$
\begin{aligned}
& x \sim N\left(\mu, \sigma^{2}\right) \\
& \left.Y_{1}=\left(x_{1}-\mu\right)^{2}\right) \quad Y_{2}=\left(x_{2}-\mu\right)^{2}
\end{aligned}
$$

The chi-square $\left(x^{2}\right)$ is defined as the sum of k squared standard distributions.

Probability density function (pdf):

Chi-Square Distribution

Chi-Squared Distributions

Chi-Square Distribution

One of the more common uses of the χ^{2} distribution is its goodness-of-fit test.

For categorical data, it measures the difference between what we would expect to see and what we saw. The results of the test tell us whether our observed values were extreme.

For example, let's say we asked 100 people their favorite soft drink. We received the following responses:

If all the soft drinks were equally likely, what would we expect to see?

Chi-Square Distribution

The χ^{2} statistic measures how different the observed and expected values are:

Expected is in terms of the null hypothesis. In our example, we're assuming all sodas are equally liked. Our data will either provide enough evidence for us to refute the idea that sodas are equally liked or we will not have enough evidence to reject the hypothesis that sodas are equally liked. For our data, this is

$$
\frac{(27-25)^{2}}{25}+\frac{(30-25)^{2}}{25}+\frac{(28-25)^{2}}{25}+\frac{(15-25)^{2}}{25}=5.52
$$

Now we compare our test statistic 5.52 , to $2 \chi_{k-1}^{2}$ to see if it is an extreme value, i.e. is $P\left(\chi_{k-1}^{2}>5.52\right)$ small?

- If yes, reject the null hypothesis to conclude not all sodas are equally preferred. If no, cannot reject the null.

Exponential Distribution

The Exponential distribution is continuous distribution that is somewhat similar to the geometric distribution. Often we think of it as a way to model the time until a 'failure'.

Examples:

- Population Decline
- Radioactive Decay
- How long a patient will live after surgery

This distribution is sometimes also called a type of survival
function.

Exponential Distribution

The probability distribution

$$
\text { density } f(x)=\lambda e^{-\lambda x}
$$

resulting in

Exponential Distributions

Exponential Distributions

